This course covers vehicle handling dynamics and general automotive vehicle design. A large part of the curriculum relates to powertrain development (engine and transmission technology).

Sustainability Learning Objective: To discuss and understand the role of how technology can be utilized to reduce the resource consumption and emissions of automobiles.

Specific Sustainability Objectives/Topics:
- Engine mapping and fuel consumption:
 - What factors affect engine performance?
 - Where are the “sweet spots” for operation?
- Driving cycle needs:
 - What are the predominant factors determining power needs?
 - How do these vary for different situations and drive cycles?
 - What types of power sources or drivetrain schemes are necessary to achieve these requirements?
- Utilizing advanced engine and transmission control for fuel economy:
 - How can transmission and engine controls (throttle-by-wire, computer controlled transmissions, CVTs ...) be utilized to optimize fuel economy across a driving cycle?
- Qualitative discussion of alternative fuels:
 - What are the attractive features of alternative fuels? (ex. availability, renewability, emissions ...)?
 - What main hurdles are associated with alternative fuels? (ex. vehicle technologies, infrastructure change, social economic changes ...)
 - What is the role of subsidizing in meeting the challenges?
 - What total lifecycle costs must be considered? (ex. upstream and downstream emissions)
- Hybrid vehicle control schemes
 - How can multiple power generators be utilized to increase general engine performance and fuel economy?
 - What total lifecycle costs must be considered? (ex. total upstream/downstream emissions, manufacturing costs and penalties, disposal/recyclability ...)
 - How do short term incentives aid in the development of technologies that may be beneficial in the future? (ex. battery/motor technology, the role of subsidies ...)

Integration and Assessment:
These topics will be integrated into the lectures and qualitative assessment will be integrated into the exams (which make up a large component of the grading). Specific quantitative calculations (fuel consumption and/or BSFC calculations) will be integrated into current assignments (acceleration simulations, dynamometer data analysis), and one small research/discussion assignment will be given on alternative fuels.